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Abstract

This paper provides a thorough analysis of six laminar-to-turbulent bypass transition models. Five models are obtained by combining
a transition-onset correlation with an intermittency-factor models, whereas the sixth one is a single-point model based on the use of a
laminar kinetic energy transport equation. All models have been embedded in a Reynolds averaged Navier–Stokes solver employing a
low Reynolds number k–x turbulence model. The performance of the transition models have been evaluated by computing three well
documented incompressible flows past flat plates, namely, tests T3A, T3B, and T3C2 of ERCOFTAC SIG 10, with different free-stream
conditions, the last one being characterized by a non-zero pressure gradient. Finally, a more complex test case has been considered, for
which detailed experimental data are available in the literature, namely, the two-dimensional flow through a turbine cascade.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

During the last decades, the role of computational fluid
dynamics (CFD) in the development of modern turboma-
chinery has become more and more important, insofar as
it can be routinely employed to reduce design time and
costs and it can also be employed to achieve a deeper
understanding of the basic physics of complex-flow phe-
nomena, which are crucial to design improved engines.
Therefore, the validation of the numerical models and their
application to flow configurations of increasing complexity
is of great interest. In particular, one of the most challeng-
ing problems when developing accurate computational
tools is the laminar-to-turbulent boundary-layer transition,
whose role in gas turbine engines is widely recognized
(Mayle, 1991).
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In many turbomachinery flows, although the main
stream can be highly turbulent, the boundary layers may
be either laminar or turbulent and transition mainly occurs
bypassing the ‘‘natural’’ amplification of Tollmien–Schlich-
ting waves, due to the typical high level of free-stream tur-
bulence intensity. The performance of turbines (especially
low-pressure ones) and compressors can be highly influ-
enced by transition: in many cases, it may be crucial for
the generation of large separation regions, which have a
remarkable impact on losses, and for the heat-transfer phe-
nomenon. Therefore, the modeling of transition represents
a fundamental issue for the improvement of the perfor-
mance of modern turbomachinery, but it is also a formida-
ble task to achieve because the transition process involves a
wide range of scales and it is very sensitive to physical flow
features, such as pressure gradients and free-stream turbu-
lence. The basic mechanism of boundary-layer transition
under different flow conditions can be studied using direct
numerical simulations and large eddy simulations for low
to moderate values of the Reynolds number. Unfortunately,
due to their prohibitive computational cost, such techniques
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Nomenclature

Cf skin-friction coefficient, Cf ¼ sw=ð1=2u2
1q1Þ

D diffusion term, source term
H specific total enthalpy
H12 shape factor
K acceleration parameter, (m/u2)(du/dx)
k turbulence kinetic energy
n spot generation rate
n̂ dimensionless spot generation rate
P production term
p pressure
Q conservative variable vector
Qv primitive variable vector
Reh momentum thickness Reynolds number, Reh =

(hu1)/m
S source term
Sij strain-rate-tensor components
T temperature
t time
Tu turbulence intensity (Tu ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k=3u2

1
p

)
U specific total internal energy
u velocity magnitude
ui, uj velocity components
u1 local free-stream speed
uin inlet velocity
u+ u/us

us friction velocity, us ¼
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
x curvilinear coordinate
y+ (ynus)/m
yn normal distance to wall

d boundary-layer thickness
dij Kronecker delta
e turbulence dissipation rate
c intermittency factor
k turbulence length scale
kh Thwaites’ pressure gradient parameter
h momentum thickness
l molecular viscosity
lT eddy viscosity
lH

T clT

m l/q
mT lT/q
q density
r Emmos spot propagation parameter
sij stress-tensor components
x specific dissipation rate

Subscripts
in inlet
is isentropic
L laminar
le leading edge
T turbulent
t onset of transition, turbulent
1 free stream

Superscripts

r pseudo-time level
n physical-time level
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are not feasible for the high Reynolds numbers and the
complex geometries encountered in most turbomachinery
flows. In such cases, numerical models based on the solution
of the Reynolds averaged Navier–Stokes (RANS) equa-
tions are needed. These models are capable of predicting
with a good level of accuracy only the mean fluid- and
thermo-dynamic variables and they can achieve a good level
of reliability for the prediction of specific complex-flow
configurations employing turbulence models based on
transport equations. However, notwithstanding the efforts
of several researchers aimed at developing low Reynolds
number turbulence models with some built-in transition
modeling capability, they have been proven inadequate
for predicting the transition under general flow conditions
(Savill, 2002a; Westin and Henkes, 1997; De Palma,
2002). Recent research activity aims at developing transi-
tion models based either on non-linear eddy viscosity
methods (Craft et al., 1997; Chen et al., 1998) and Rey-
nolds-stress transport equations (Hanialić et al., 1997), or
on the concept of intermittency, which represents the frac-
tion of time the flow is turbulent (Mayle, 1991). Craft
et al. (1997) have shown that using a low-Re k–e turbulence
model with either a two- or a three-equation non-linear
approach can provide accurate results for the T3A and
T3B test cases, see also Chen et al. (1998) and Savill
(2002a). In fact, as reported by Chen et al. (1998), such
non-linear models ‘‘return a more credible representation
of transition than the linear variant’’; however, results for
test cases with non-zero pressure gradient do not provide
an improvement over linear eddy viscosity models. These
numerical experiments led Chen et al. (1998) to the conclu-
sion that ‘‘none of the models may be said to be entirely
satisfactory’’. The level of closure provided by the Rey-
nolds-stress transport models certainly offers a more general
framework to predict complex turbulent flows and transi-
tion. Also for this kind of models the tuning of the coeffi-
cients may have a remarkable impact on the results
(Hanialić et al., 1997). Furthermore, the combination of
low-Re Reynolds-stress transport models with an intermit-
tency transport equation has recently been proposed with
success, as reported by Savill (2002b). However, the
required computational cost of such models is larger than
that required by linear and non-linear eddy viscosity
models. Therefore, this paper will focus on models based
on the intermittency concept in conjunction with a linear
eddy viscosity model. The most common way to couple
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the transition model with the turbulence one is to multiply
the eddy viscosity coefficient by the intermittency coeffi-
cient, although such a simple approach could produce con-
siderable errors in the calculations of the shear stresses
(Mayle, 1991). Therefore, several methods have been pro-
posed to compute the intermittency coefficient, being based
on empirical algebraic correlations (Mayle, 1991; Miche-
lassi et al., 1999) or on the solution of an additional trans-
port equation (Cho and Chung, 1992; Suzen and Huang,
2000; Steelant and Dick, 1996). One disadvantage of inter-
mittency type models is that they rely on integral or non-
local parameters, such as boundary-layer thickness and
momentum thickness, which are difficult to evaluate in com-
plex geometry configurations. In order to overcome such a
drawback, Walters and Leylek (2004) provided a single-
point transition model, which does not depend on the inter-
mittency factor: following the approach originally proposed
by Mayle and Schulz (1997), they model the pretransitional
stream-wise boundary-layer fluctuations induced by the
free-stream turbulence, by introducing an additional trans-
port equation for the laminar kinetic energy.

In this paper, the low Reynolds number k–x turbulence
model (Wilcox, 1998), already employed by the authors for
the solution of the RANS equations (De Palma et al.,
2001), has been embedded in a multi-block solver for the
preconditioned compressible RANS equations to provide
an accurate, efficient and versatile tool for studying com-
plex flows of industrial interest. Six transition models have
been considered: three of them are based on combinations
of algebraic correlations (Abu-Ghannam and Shaw, 1980;
Suzen and Huang, 2000); two of them are obtained com-
bining an algebraic correlation to predict the transition
onset with two different intermittency transport models
(Steelant and Dick, 1996; Suzen and Huang, 2000); and
the last one employs a transport equation for the laminar
kinetic energy (Walters and Leylek, 2004). The last model
has been extended to the computation of compressible
flows and has been validated, for the first time to the
authors’ knowledge, versus well known basic test cases pro-
vided by ERCOFTAC and a complex flow through a tur-
bomachinery cascade.

2. Flow equations and turbulence model

The Reynolds averaged Navier–Stokes (RANS) equa-
tions, written in terms of Favre mass-averaged variables
and using the low Reynolds number k–x turbulence model,
are written as follows:

oq
ot
þ o

oxj
ðqujÞ ¼ 0; ð1Þ

oðquiÞ
ot
þ o

oxj
ðqujuiÞ ¼ �

op
oxi
þ oŝij

oxj
; ð2Þ

oðqUÞ
ot
þ o

oxj
ðqujHÞ ¼

o
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uiŝij þ ðlþ r�lTÞ
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oxj
� qj

� �
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ð3Þ
oðqkÞ
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oxj
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oxj
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oxj
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sij
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ox
oxj

� �
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ð5Þ
In the equations above, U and H are the specific total en-
ergy and enthalpy, respectively, both including the turbu-
lence kinetic energy, k; the eddy viscosity, lT, is defined
in terms of k and of the specific dissipation rate, x, accord-
ing to the k–x turbulence model of Wilcox (1998), namely:

lT ¼ a�
qk
x
: ð6Þ

Moreover, ŝij indicate the sum of the molecular and Rey-
nolds (sij) stress-tensor components. According to the
Boussinesq approximation, one has:

ŝij ¼ ðlþ lTÞ
oui

oxj
þ ouj

oxi
� 2

3

ouk

oxk
dij

� �
� 2

3
qkdij: ð7Þ

Finally, the heat flux vector components, qj, are given as:

qj ¼ �
l
Pr
þ lT

PrT

� �
oh
oxj

; ð8Þ

where Pr = 0.71 and PrT = 1 are the laminar and turbulent
Prandtl numbers, respectively. Sutherland’s law is used to
compute the molecular viscosity coefficient and the low-
Reynolds-number coefficients are used for the k–x model,
see Wilcox (1998) for details.

3. Laminar-to-turbulent transition

In this section, a detailed description of the transition
models employed in the present work is provided. Firstly,
two algebraic correlations employed to predict the transi-
tion onset are presented and then five transition models
are described, obtained combining such correlations with
different intermittency models. All of these models are
based on the evaluation of the intermittency factor
(namely, the probability that the flow is locally turbulent),
c, which is used to compute the eddy viscosity coefficient,
lH

T ¼ clT, employed instead of lT in the flow and turbu-
lence-model equations. Finally, the sixth model is
described, which is a single-point transition model based
on a transport equation for the laminar kinetic energy.

3.1. Transition-onset correlations

3.1.1. Abu-Ghannam and Shaw (C1)
The correlation proposed Abu-Ghannam and Shaw

(1980) is a well known algebraic model based on experi-
mental measurements of flows over flat plates. It evaluates
a critical value for the Reynolds number based on the
boundary-layer momentum thickness, which indicates the
location of the transition onset (Abu-Ghannam and Shaw,
1980):
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Reht ¼ 163þ exp F ðkhÞ �
F ðkhÞTule

6:91

� �
; ð9Þ

where Tule is the free-stream value of Tu at the leading edge
section and kh = (h2/m1)du1/dx is the pressure gradient
parameter, u1 being the local free-stream speed. It is note-
worthy that the edge of the boundary layer is defined as the
point at which u = 0.99uin, for the test cases characterized
by zero pressure gradient; otherwise, it is the first grid point
away from the wall at which the speed increases less than
1% with respect to its value at the previous grid point.
The function F is given as:

F ðkhÞ ¼
6:91þ 12:75kh þ 63:64k2

h if kh < 0;

6:91þ 2:48kh � 12:27k2
h if kh P 0:

(
ð10Þ
3.1.2. Suzen et al. (C2)

The following correlation has been proposed by Suzen
et al. (2002) for evaluating Reht :

Reht ¼ 120þ 150Tu�2=3
le

� �
coth½4ð0:3� jKminj � 105Þ�:

ð11Þ
In the equation above Kmin indicates the smallest value of
the pressure gradient parameter K1 ¼ ðm1=u2

1Þðdu1=dxÞ
in the deceleration region, evaluated at the local edge of
the boundary layer. According to the correlations provided
by Mayle (1991), the maximum value for |Kmin| is 3 · 10�6.

3.2. Transition models

3.2.1. Model 1 (M1)

The first transition model (M1) is obtained using the
transition-onset correlation C1 together with the general
Dhawan and Narasimha correlation for the intermittency
factor (Dhawan and Narasimha, 1958),

c ¼ 1� exp½�n̂rðRex � RextÞ
2�; ð12Þ

where x is the curvilinear coordinate along the wall, Rex =
u1x/m1, n̂ ¼ nm2

1=u3
1 is the non-dimensional production

rate parameter of the turbulent spots, m is the kinematic
viscosity, and r is the Emmos parameter which depends
on the shape and velocity of the turbulent spots. In Eq.
(12) the spot production parameter n̂r has been computed
as (Mayle, 1991):

n̂r ¼ 1:5� 10�11Tu7=4
1 ; ð13Þ

where Tu1 is the local free-stream value of Tu, evaluated as
Tu1 = Tule,1(ule,1/u1)3/2.

3.2.2. Model 2 (M2)

In the presence of a pressure gradient, correlation (13)
for the spot production rate is corrected as

n̂r ¼ ðn̂rÞZPGPRC; ð14Þ
where ðn̂rÞZPG is the production rate for zero pressure gra-
dient (ZPG), and PRC accounts for the influence of the
pressure gradient through the value of the parameter K1.
From the data of Mayle (1991), Steelant and Dick (1996)
provided the following correlation:

PRC ¼ ð474Tu�2:9
le Þ

1�expð2�106K1Þ; K1 < 0;

10�3227K0:5985
1 ; K1 P 0;

(
ð15Þ

where Tule is the free-stream value of Tu at the leading edge
section.

The second model (M2) is obtained combining the tran-
sition-onset correlation C1 with Eqs. (12), (14), and (15).

3.2.3. Model 3 (M3)

Transition model M3 employs the transition-onset cor-
relation C2 and the previous spot production rate corrected
with the coefficient PRC.

3.2.4. Modified Steelant and Dick model (M4)

Steelant and Dick (1996) proposed a model for bypass
transition based on the correlation (12). Assuming a
Gaussian distribution for n̂rðRex � RextÞ

2 in the transition
region, centered at the point of the transition onset, xt, they
provided the following transport equation for the intermit-
tency factor:

oðqcÞ
ot
þ oðqujcÞ

oxj
¼ 1� cð ÞbðxÞq ffiffiffiffiffiffiffiffiffi

ukuk
p

; ð16Þ

where b(x) = 2f(x)f 0(x), f 0(x) being the derivative of f(x).
f(x) is the following polynomial interpolation function for
n̂rðRex � RextÞ

2 around the point xt of transition onset
(Steelant and Dick, 1996):

f ðxÞ ¼ ax04 þ bx03 þ cx02 þ dx0 þ e
h1x0 þ h2

ð17Þ

with x 0 = x � xt, and

a ¼ 50

ffiffiffiffiffiffi
nr
u

r
; b ¼ �0:4906; c ¼ 0:204

nr
u

� ��0:5

;

d ¼ 0; e ¼ 0:04444
nr
u

� ��1:5

; h1 ¼ 50; h2 ¼ 10e: ð18Þ

The values of the coefficients a and h1 are the ones provided
by Suzen and Huang (2000) in order to adapt the model
originally proposed by Steelant and Dick for the condi-
tioned Navier–Stokes equations to the RANS equations.
The value of n̂r is estimated using a modified version of
the correlation (13), namely,

n̂r ¼ 1:8� 10�11Tu7=4
1 : ð19Þ

The intermittency transport model of Steelant and Dick
combined with the transition-onset correlation C2 is re-
ferred to as M4.

3.2.5. Suzen and Huang model (M5)

Suzen and Huang (2000) proposed a transition model
consisting in one transport equation for the intermittency
factor based on the correlation of Dhawan and Narasimha,
Eq. (12), for the intermittency distribution along the flow
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direction. This model provides the distribution of the inter-
mittency factor along the normal direction to the wall. To
this end, it combines the model of Steelant and Dick (1996)
with the model of Cho and Chung (1992) employing a
blending function. The transport equation for the intermit-
tency factor, c, reads:

oðqcÞ
ot
þ oðqujcÞ

oxj
¼ Dc þ Sc; ð20Þ

where Dc is the diffusion term, namely,

Dc ¼
o

oxj
ð1� cÞcrcL

lþ ð1� cÞrcT
lT

	 
 oc
oxj

� �
; ð21Þ

and

Sc ¼ ð1� cÞ½ð1� F ÞT 0 þ F ðT 1 � T 2Þ� þ T 3; ð22Þ
where F is a blending function. The first term, T0, derives
from the model of Steelant and Dick (1996),

T 0 ¼ C0q
ffiffiffiffiffiffiffiffiffi
ukuk
p

bðxÞ; ð23Þ
where b(x) = 2f(x)f 0(x) and the function f(x) is given by Eq.
(17) with the coefficients (18). The T1, T2 and T3 terms are
derived from the model of Cho and Chung (1992) and are
given respectively as:

T 1 ¼
C1c

k
sij

oui

oxj
; ð24Þ

T 2 ¼ C2cq
k1=2

b�x
uiffiffiffiffiffiffiffiffiffi
ukuk
p

oui

oxj

oc
oxj

; ð25Þ

T 3 ¼ C3q
k

b�x
oc
oxj

oc
oxj

: ð26Þ

The blending function, F, provides a smooth passage be-
tween the two models in the transition region. It is evalu-
ated as a function of the ratio k/(Sm), where S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
,

and is given as:

F ¼ tanh4 k=ðSmÞ
200ð1� c0:1Þ0:3

" #
: ð27Þ

The above equation is based on the correlation due to
Klebanoff for the distribution of c in the normal direction
to the wall, and it renders active the model of Steelant and
Dick (1996) close to the wall, whereas it applies the model
of Cho and Chung in the outer region. The values of the
coefficients employed for the present model are:

rcL
¼ 1; rcT

¼ 1;

C0 ¼ 1; C1 ¼ 1:6; C2 ¼ 0:16; C3 ¼ 0:15:

�
ð28Þ

The intermittency transport model of Suzen and Huang
combined with the transition-onset correlation C2 is re-
ferred to as M5.

3.2.6. Walters and Leylek model (M6)

This model is a modified version of the original model
presented by Walters and Leylek (2004, 2005), suitable
for compressible flow calculations. The model is based on
an eddy viscosity coefficient, determined by using three
transport equations for the turbulence kinetic energy, k,
the laminar kinetic energy, kL, and the specific dissipation
rate, x, respectively:

oðqkÞ
ot
þ o

oxj
ðqujkÞ ¼ qP k þ qR� qe� qDT

þ o

oxj
lþ qaT

rk

� �
ok
oxj

� �
; ð29Þ

oðqkLÞ
ot

þ o

oxj
ðqujkLÞ ¼ qP kL

� qR� qDL þ
o

oxj
l

okL

oxj

� �
;

ð30Þ
oðqxÞ

ot
þ o

oxj
ðqujxÞ ¼ qPx þ qCxR

x
k

R� qCx2x
2

þ qCx2fxaT

keff

kT

� �4=3 ffiffiffi
k
p

y3
n

þ o

oxj
lþ qaT

rx

� �
ox
oxj

� �
: ð31Þ

Eqs. (29) and (31) substitute the equations of the original
turbulence model, namely, Eqs. (4) and (5), respectively.
The laminar kinetic energy represents the magnitude of
the ‘‘non-turbulent’’ stream-wise fluctuations in the pre-
transitional boundary layer, defined in the work of Mayle
and Schulz (1997). The effective length scale, keff, is the
minimum length scale of the eddies contributing to the pro-
duction of these non-turbulent fluctuations by means of the
splat mechanism described by Walters and Leylek (2005)
and Volino (1998). It is estimated as

keff ¼ minðCkyn; kTÞ; ð32Þ
where Ck = 2.495, kT = k3/2/e is the turbulence length scale,
e = xk is the turbulence dissipation rate, and yn is the dis-
tance from the nearest wall. The turbulence kinetic energy
can be divided into a large-scale energy, kT,l, and a small-
scale energy, kT,s, as follows

kT;s ¼ k keff=kTð Þ2=3
; kT;l ¼ k 1� keff=kTð Þ2=3

h i
; ð33Þ

the former one interacts with the mean flow as a typical
turbulence energy, whereas the latter one contributes to
the production of kL.

The first term on the right-hand side of Eq. (29) is the
production of turbulence due to turbulent fluctuations

P k ¼ mT;s

oui

oxj
þ ouj

oxi
� 2

3

ouk

oxk
dij

� �
oui

oxj
� 2

3
kT;s

ouk

oxk
; ð34Þ

where the small-scale viscosity, mT,s, is defined as

mT;s ¼ min flfINTCl

ffiffiffiffiffiffiffi
kT;s

p
keff ;

2:5eTOT

S2

� �
: ð35Þ

In the above equation, Cl is the turbulent viscosity coeffi-
cient, taken to be 0.09 in fully turbulent regions, and fl
and fINT are damping functions used to impose near-wall
viscous effects and to prevent the overprediction of
momentum in the latter stages of bypass transition, respec-
tively. The functional form of these coefficients is reported
in detail by Walters and Leylek (2004, 2005).
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The first term on the right-hand side of Eq. (30) is the
production of the laminar kinetic energy due to large-scale
turbulent fluctuations,

P kL
¼ mT;l

oui

oxj
þ ouj

oxi
� 2

3

ouk

oxk
dij

� �
oui

oxj
� 2

3
kT;l

ouk

oxk
: ð36Þ

The large-scale viscosity mT,l is defined as

mT;l ¼ min fs;lCl1

Xk2
eff

m

� � ffiffiffiffiffiffiffi
kT;l

p
keff ;

0:5kT;l

S

� �
; ð37Þ

where fs,l is a time-scale-based damping function (Walters
and Leylek, 2004).

The term R in Eqs. (29)–(31) represents the effect of the
stream-wise fluctuations onto turbulence during bypass
transition,

R ¼ CRbBPkLx
kT

keff

� �
; ð38Þ

where bBP is a threshold function defined as

bBP ¼ 1� exp �/BP

ABP

� �
; /BP ¼max

ffiffiffi
k
p

yn

m
�CBP;crit

 !
;0

" #
:

ð39Þ
The terms DT and DL in Eqs. (29) and (30) are the turbu-
lent and laminar near-wall dissipation terms, respectively,
and they are given as (Walters and Leylek, 2004)

DT ¼ 2m
o
ffiffiffi
k
p

oxj

o
ffiffiffi
k
p

oxj
; DL ¼ 2m

o
ffiffiffiffiffi
kL

p

oxj

o
ffiffiffiffiffi
kL

p

oxj
: ð40Þ

According to these definitions, the total dissipation rate of
the fluctuation energy, eTOT, is defined as the sum of the
dissipation rate of turbulence, e, and of the near-wall dissi-
pation terms, DT and DL.

The production term Px in Eq. (31) takes the form

Px ¼
x
k

Cx1 mT;x
oui

oxj
þ ouj

oxi
� 2

3

ouk

oxk
dij

� �
oui

oxj
� 2

3
kT;s

ouk

oxk

� �
;

ð41Þ
where mT,x corresponds to the small-scale viscosity in Eq.
(35) without any imposed limit. The coefficients CxR and
Cx2 in Eq. (31) are assigned according to the following
functional form

CxR ¼ 1:5
kT

keff

� �2=3

� 1 and Cx2 ¼ 0:92
keff

kT

� �4=3

: ð42Þ

Finally, the turbulence scalar diffusivity in Eqs. (29) and
(31) is defined as

aT ¼ fvCl;std

ffiffiffi
k
p

keff : ð43Þ
The numerical values of the model constants are reported
by Walters and Leylek (2005) and are omitted in this work
for the sake of brevity.

The influence of turbulent and laminar fluctuations on
the mean flow and energy equations is accounted for by
defining a total eddy viscosity which is used to model the
Reynolds stress tensor in the following way
�quiuj ¼ mTOT

oui

oxj
þ ouj

oxi
� 2

3

ouk

oxk
dij

� �
� 2

3
qkTOTdij; ð44Þ

where mTOT = mT,s + mT,l and kTOT = kT,s + kT,l = k.

4. Numerical method

The numerical method employed to solve the two-
dimensional RANS and transition model equations is
described in the following. The system of equations is writ-
ten in generalized curvilinear coordinates, (n,g); a pseudo-
time derivative is added to the left-hand side in order to use
a time marching approach for the present steady-state
problems. The preconditioning matrix, C, proposed by
Venkateswaran et al. (1992) and Merkle (1995) is finally
used to premultiply the pseudo-time derivative in order
to improve computational efficiency. The final system
reads:

C
oQv

os
þ oE

on
þ oF

og
� oEv

on
� oF v

og
¼ D; ð45Þ

where Qv = (p,u,v,T,k,x,f)T is the primitive variable vec-
tor, E, F, and Ev, Fv indicate the inviscid and viscous fluxes,
respectively, D is the vector of the source terms for the tur-
bulence and transition equations. Notice that the depen-
dent variable f is present only for models M4 (f = c), M5
(f = c), and M6 (f = kL). Discretizing Eq. (45) by the Euler
implicit scheme in pseudo-time, the following equation in
delta form is obtained:

Cþ Ds
o

on
Av � Rnn

o

on
� Rng

o

og

� ��

þDs
o

og
Bv � Rgg

o

og
� Rgn

o

on

� ��
DQv ¼ �DsRr; ð46Þ

where r and Ds indicate the pseudo-time level and step,
Av = oE/oQv, Bv = oF/oQv, Rij are the viscous coefficient
matrices (Schwer, 1999), and the matrix C is evaluated as
proposed by Venkateswaran and Merkle (1995) and Bue-
low et al. (1997). The residual is given as:

Rr ¼ oðEr � Er
vÞ

on
þ oðF r � F r

vÞ
og

� Dr; ð47Þ

and the delta unknowns to be annihilated at every pseudo-
time level are

DQv ¼ Qrþ1
v � Qr

v: ð48Þ

The left-hand side (LHS) of Eq. (46) is modified to improve
the efficiency of the method, without affecting the residual,
namely, the physical solution. Firstly, the non-orthogonal
viscous coefficient matrices, Rng and Rgn, are neglected,
and the remaining ones are approximated by the corre-
sponding spectral radii multiplied by the identity matrix,
Rnn = RnI and Rgg = RgI. Furthermore, in order to solve
the resulting linear system, the diagonalization procedure
of Pulliam and Chaussee (1981) is firstly applied, so that
the matrices C�1Av and C�1Bv can be written as:



Table 2
Inlet conditions for the ERCOFTAC test cases

T3A T3B T3C2

Tuin (%) 10 8.2 8.5
(lT/l)in 0.35 114 0.11

Table 1
ERCOFTAC test cases

Re uin (m/s) Tu (%) mT (m2/s)

T3A 3.6 · 105 5 3.35 1.48 · 10�5

T3B 6.3 · 105 9.6 6 1.48 · 10�5

T3C2 3.5 · 105 5 2.8 1.54 · 10�5
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C�1Av ¼MnKnM�1
n ; C�1Bv ¼MgKgM�1

g ; ð49Þ

where Mn, Mg are the right-eigenvector matrices, M�1
n , M�1

g

are the left-eigenvector matrices; and Kn and Kg are diago-
nal matrices containing the eigenvalues of C�1Av and
C�1Bv, respectively; then, the LHS of Eq. (46) is factorized,

CMn Iþ Ds
o

on
Kn � RnI

o

on

� �� �
M�1

n Mg

� Iþ Ds
o

og
Kg � RgI

o

og

� �� �
M�1

g DQv ¼ �DsRr; ð50Þ

and solved by a standard scalar alternating direction impli-
cit procedure (Buelow et al., 1997). A cell-centered finite
volume space discretization is used on a multi-block struc-
tured mesh. A third-order-accurate Steger and Warming
flux vector splitting scheme (Steger and Warming, 1981)
is employed to discretize the convective terms, the minmod
limiter being applied in the presence of shocks, whereas the
viscous terms are discretized by second-order-accurate cen-
tral differences. Further details of the method can be found
in Schwer (1999, 2003), the latter also providing the origi-
nal version of the code developed at the Pennsylvania State
University.

Characteristic boundary conditions for the flow vari-
ables are imposed at inflow and outflow points, whereas
no slip and adiabatic conditions are imposed at the walls.
The values of k and x at inflow points are assigned
together with c = 0 for models M1–M5, whilst linear
extrapolation is used at outflow points; at solid walls
k = 0 and x is evaluated using the condition proposed by
Menter and Rumsey (1994), x ¼ 60m=ðDy2

1bÞ, where Dy1

is the distance of the first cell center from the wall. For
model M6, also k = 0 and kL = 0 are assigned at solid walls
whereas the condition ox/on = 0 is employed for the spe-
cific dissipation rate. It is noteworthy that, for stability rea-
sons, the wall boundary conditions assigned to k and kL are
different from those employed by Walters and Leylek
(2004) who used Neumann boundary conditions.

All results have been obtained with double-precision
computations and are grid converged. The computations
have been started considering the fluid at rest, the turbulent
and transition quantities being initialized to zero. A resid-
ual drop of eight orders of magnitude for the conserved
variable equations has been required for convergence, with
only the following exceptions: the equation for kL of model
M6, that achieves a residual drop of about four orders of
magnitude for all test cases; the equation for c of model
M5, that provides a residual drop of about four orders of
magnitude for test cases T3A and T3C2.

5. Results

This section provides the numerical results obtained
using the numerical method and the six transition models
described above for four well documented test cases: three
flows over a flat plate with different free-stream conditions
and the more complex flow through a turbine cascade.
5.1. Flows over a flat plate

The test cases proposed by ERCOFTAC SIG 10 (Savill,
1993a,b) have been considered. The experimental data cor-
respond to the flow configurations known as T3A, T3B and
T3C2. All tests refer to the transitional flow over an adia-
batic flat plate with a sharp leading edge. The first two tests
have zero pressure gradient, whereas in the third one the
flow experiences a non-zero pressure gradient resulting
from the geometry of the wall facing the flat plate (Savill,
1993a,b). The flow conditions corresponding to the three
tests are given in Table 1. The Reynolds number is based
on the inlet (in) values and the reference length equal to
one meter. The turbulence intensity is measured at the sec-
tion containing the leading edge of the plate. In order to
match such values of Tu and the correct decay of the tur-
bulence kinetic energy along the channel, the values of Tuin

and (lT/l)in provided in Table 2 have been assigned at the
inlet section. Needless to say, the transition is strongly
influenced by the decay of Tu in the free-stream; therefore,
it is very important for a correct analysis of the results to
assign the appropriate inlet boundary conditions.

5.1.1. Test cases T3A and T3B

For the first test case, the length of the plate is 1.7 m,
whereas the computational domain is a rectangle with
dimensions 1.85 m · 0.15 m, its inlet section being located
at 0.15 m upstream of the leading edge. The domain is dis-
cretized by 140 · 120 stretched cells, so that y+ = 0.1 at the
first grid point close to the plate. Figs. 1–7 provide the
results obtained using the M1, M4, M5, and M6 transition
models for the T3A test case. Models M2 and M3, using a
pressure-gradient correction, have not been considered.
Fig. 1 shows that a satisfactory matching with the experi-
mental decay of Tu along the channel is achieved. Fig. 2
provides the distribution of the skin-friction coefficient,
Cf, along the plate: the numerical results show that, for this
test case, correlation C1 provides a delayed onset (corre-
sponding to Reht ¼ 198:16), followed by a too short transi-
tion length predicted by model M1. It is noteworthy that
models M4 and M5 provide very similar results, Reht being
equal to 224.31. Model M6 provides the most accurate
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predictions for this test case. On the other hand, Fig. 3 does
not show any substantial difference among the numerical
results obtained using the four models for the Reynolds
number based on the momentum thickness, Reh. Fig. 4
provides a comparison between the experimental and
numerical boundary-layer profiles at three cross-sections
along the plate, upstream of, inside, and downstream of
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the transition region, respectively. It is clear from the veloc-
ity profiles at Rex = 194,403 that model M1 predicts tran-
sition too early, whereas the laminar (Rex = 32,972) and
turbulent (Rex = 506,612) velocity profiles, reported in
the same figure, show a good agreement with the experi-
mental data. This is confirmed by the intermittency-factor
profiles at the same cross-sections obtained using models
M1, M4 and M5 and provided in Fig. 5. The profiles at
Rex = 194,403 and 506,612 show that model M5, unlike
models M1 and M4, reduces to zero the intermittency fac-
tor in the free-stream. For completeness, Fig. 6 shows the
turbulence kinetic energy profiles at the same cross-sec-
tions. From the profiles at Rex = 32,972, it is clear that
only model M6 has already triggered the transition onset
in agreement with the experimental data. Furthermore,
Fig. 7 provides the turbulence and laminar kinetic energy
profiles for model M6 at the three sections above. The lam-
inar kinetic energy is about two orders of magnitude smal-
ler than the turbulence one and is also reported in the boxes
using a different scale. Also the laminar kinetic energy has
its peak value very close to the wall at all sections. The test
case T3A has been also computed using model M3: Fig. 8
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Fig. 8. Skin-friction coefficient for test case T3A.
demonstrates that the differences between the algebraic and
the intermittency-transport models are negligible, when
using the same transition-onset correlation, C2. A final
consideration is in order. As previously mentioned, all
the results are grid converged. This is confirmed by com-
paring the distributions of the skin-friction coefficient
obtained with models M1, M5 and M6, respectively, using
three grids, provided in Figs. 9–11. Therefore the finest
mesh can be considered adequate for the test cases T3A,
T3B and T3C2, in agreement with the results of Chen
et al. (1998) who found a similar mesh to be suitable for
such a computation.

For the second test case, labeled T3B, the previous com-
putational grid has been employed. Figs. 12–18 provide the
numerical results obtained using the M1, M4, M5, and M6
transition models. Fig. 12 demonstrates that also in this
case a satisfactory matching with the experimental decay
of Tu along the channel is achieved. Fig. 13 provides the
distribution of the skin-friction coefficient along the plate:
both transition-onset correlations, C1 and C2, predict the
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Fig. 10. Skin-friction coefficient for test case T3A: mesh refinement study
using M5.
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transition with a remarkable delay, the numerical results
being very close to each other. The Reht values at the tran-
sition onset, provided by correlations C1 and C2, are
165.48 and 198.44, respectively. It appears that any of the
three models using C1 and C2 cannot predict correctly
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Fig. 17. Turbulence kinetic energy profiles for test case T3B.
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Fig. 19. Free stream turbulence intensity decay for test case T3C2.
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the position of the transition onset with the present higher
value of the free-stream turbulence. On the other hand,
model M6 performs even better than in the previous test,
providing the best solution. All models underestimate the
value of Reh, as shown in Fig. 14; on the other hand,
Fig. 15 shows that a satisfactory agreement is obtained
for the velocity profiles. For completeness, the intermit-
tency-factor distributions obtained using models M1, M4
and M5 are shown in Fig. 16 and the corresponding turbu-
lence kinetic energy profiles are provided in Fig. 17. Also in
this case, from the profiles at Rex = 32,439, it is clear that
only model M6 has already triggered the transition onset in
agreement with the experimental data. Finally, Fig. 18 pro-
vides the turbulence and laminar kinetic energy profiles for
model M6 at the three sections above. Again the laminar
kinetic energy is reported in the boxes using a different
scale.

5.1.2. Test case T3C2

For this test case, the length of plate is 1.7 m, whereas
that of the computational domain is 1.8 m, its inlet section
being located 0.1 m upstream of the leading edge. The flat
plate is at the bottom boundary of the domain, whereas the
top boundary is shaped according to the ERCOFTAC T3C
test geometry, providing a convergent–divergent channel.
Such a computational domain is discretized by 202 · 129
stretched cells so that y+ = 0.1 at the first grid point close
to the plate. Figs. 19–25 provide the results obtained using
the six transition models. Fig. 19 shows that a satisfactory
matching with the experimental decay of Tu along the
channel is achieved. Figs. 20 and 21 provide the distribu-
tions of the skin-friction coefficient and Reh along the plate,
respectively. The numerical results show that correlation
C1, employed in models M1 and M2, predicts transition
too early, whereas correlation C2, employed in the remain-
ing models, is adequate. In fact, the values of Reht provided
by correlations C1 and C2 are equal to 226.88 and 263.02,
respectively. Moreover, the two intermittency transport
models (M4 and M5) provide a more accurate distribution
of the skin-friction coefficient in the transition region with
respect to the algebraic model M3. It is noteworthy that
this test case, due to the flow acceleration, is characterized



10
-2

10
0

10
2

10
4

y+ (Rex=197033)

0

5

10

15

20

25

30

35

u+
=

u/
u τ

10
-2

10
0

10
2

10
4

y+ (Rex=345688)

M1 model
M2 model
M3 model
M4 model
M5 model
M6 model
Experimental

10
-2

10
0

10
2

10
4

y+ (Rex=620470)

u+
=

u/
u τ

Fig. 22. Boundary-layer profiles for test case T3C2.
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Fig. 23. Intermittency profiles for test case T3C2.
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Fig. 24. Turbulence kinetic energy profiles for test case T3C2.
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by a large range of Rex over which the gradient of Reh is
very small, so that a small error in the prediction of Reht
may produce a large error in the prediction of Rext : this
explains the different behaviours of correlations C1 and
C2. On the other hand, the difference between the solutions
provided by models M1 and M2 is due to the influence of
the pressure gradient correction on the spot production
parameter (see Eq. (15)), which delays the growth of the
intermittency factor. Finally, it is clearly seen that model
M6 is not suitable to predict transition for this test
case: the only difference with the previous tests, T3A and
T3B, being the presence of the pressure gradient, it can
be argued that the model needs to be modified to take into
account the effect of the pressure gradient. Finally, Figs.
22–24 provide the velocity profiles, the intermittency
factor, and the turbulence kinetic energy, at three cross-
sections along the plate, upstream of, inside, and down-
stream of the transition region. Such data confirm
the above results, models M4 and M5 providing profiles
which are in good agreement with the experimental data.
Finally, Fig. 25 provides the turbulence and laminar
kinetic energy profiles for model M6 at the above three
sections.
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5.2. Turbine cascade

Recently, in order to investigate the effect of the Rey-
nolds number on turbomachinery blade boundary-layer
transition, detailed experimental data have been provided
by Canepa et al. (2003) and Ubaldi et al. (1996) for the suc-
tion side of a high-pressure gas turbine nozzle blade. Its
main geometrical features are: chord length c = 0.3 m,
pitch-to-chord ratio g/c = 0.7, blade aspect ratio h/c = 1,
stagger angle (with respect to the axial direction)
b = 49.83�. With the use of advanced LDV techniques
and surface mounted hot-film gauges, the authors give an
accurate description of the boundary-layer development
and its turbulence characteristics such as boundary-layer
profiles, longitudinal distributions of integral parameters,
skin-friction coefficient, and turbulence kinetic energy pro-
files. In this paper, in order to validate the proposed
numerical method, the set of experimental data at
Re2c = 590,000 with M2,is = 0.086 (Canepa et al., 2003)
has been considered. The Reynolds number is based on
the exit flow conditions and on the chord length. The
upstream turbulence intensity based on the stream-wise
velocity fluctuations and inlet velocity is equal to 3%,
whereas the integral length scale of turbulence evaluated
from the power density spectrum of the stream-wise veloc-
ity is equal to 3.7% of the chord length. The two intermit-
tency transport models M4 and M5, and model M6 have
been employed for these computations, since they provided
the best results for the previous test cases.

Steady flow computations have been performed using a
multi-block grid with 22,448 cells and 18 blocks. An O-type
grid has been employed around the profile, see Fig. 26, in
order to have a quasi orthogonal mesh close to the wall.
For the first row of grid points at the wall yþmin ¼ 0:005,
yþmax ¼ 0:06, the average value being �yþ ¼ 0:04. Fig. 27 pro-
vides a comparison between the numerical and experimen-
Fig. 26. Multi-block grid for the turbine cascade.
tal distributions of the isentropic velocity along the blade,
whereas Fig. 28 shows the Mach number contours. Both
numerical results are coincident within plotting accuracy
for the three employed models. According to the measure-
ments provided by Canepa et al. (2003), at this rather low
Reynolds number, the transition region is very short and
the boundary layer on the suction side is laminar until
x/xmax = 0.55. This is supported by the analysis of the dis-
tributions along the suction side of the boundary-layer
parameters provided in Figs. 29–32, which show the skin-
friction coefficient, Cf, the displacement thickness, dw, the
momentum thickness, h, and the shape factor, H12, respec-
tively. Upstream of the start of transition, namely at
Fig. 28. Mach number contours (DM = 0.005, Mmax = 0.1).
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0.45 < x/xmax < 0.55, dw and H12 show a typical steep
increase, indicating an incipient separation which is sup-
pressed by the transition, as clearly seen by the sudden
decrease of dw and H12. The length of the transition region
is approximately equal to 15% of the suction side surface
length. The three transition models provide numerical
results in good agreement with the experimental data. In
particular, the momentum thickness distribution is very
well predicted, including the value at the transition onset.
From the behaviour of dw and H12 it appears that the dis-
placement thickness upstream of the transition region,
computed using models M4 and M5, is greater than that
provided by the experimental data. This is probably due
to the lack of modeling of the interaction between the
free-stream turbulence and the laminar boundary layer
(this will be seen in the following analysis of the turbulence
kinetic energy profiles). However, the predicted length of
the transition region is in good agreement with the experi-
mental data. On the other hand, model M6 provides an
improved prediction of the peak values of dw and H12 in
the pretransitional region at x/xmax � 0.5. At a first glance,
one could consider surprising that model M6 provides such
accurate results whereas for the previous T3C2 test case, in
the presence of a pressure gradient, the results were disap-
pointing. This behaviour may be explained considering
that the transition for the turbine flow is located in a region
with mild pressure gradient, as shown in Fig. 27. Fig. 33
provides the comparison of the measured and computed
velocity profiles at 12 cross-sections in the boundary layer
along the suction side. The agreement between numerical
and experimental data appears good. All characteristics
of laminar, transitional and turbulent profiles are well cap-
tured by the present numerical method, in particular it
appears that at x/xmax = 0.46 the flow is in condition of
incipient separation just before the transition onset.
Finally, Fig. 34 shows the profiles of the turbulence kinetic
energy along the suction side. The first five profiles demon-
strate that the present numerical model cannot capture the
turbulence fluctuations in the laminar boundary layer
induced by the free-stream turbulence. After the transition
onset, the numerical results agree qualitatively well



0 10 20 30
0.01

0.1

1

10

N
or

m
al

 d
is

ta
nc

e 
to

 w
al

l, 
y 

[m
m

]

x/x
max

=0.2

0 10 20 30

M6 model
x/x

max
=0.2

0 10 20 30

Experimental
x/x

max
=0.2

0 10 20 30

y 
[m

]

M4 model
x/x

max
=0.2

0 10 20 30

M5 model
x/x

max
=0.2

0 10 20 30 40

x/x
max

=0.2

0 10 20 30
0.01

0.1

1

10

x/x
max

=0.2

0 10 20 30

x/x
max

=0.2

0 10 20 30

x/x
max

=0.2

0 10 20 30 0 10 20 30 0 10 20 30 40

Magnitude of velocity, [m/s]

x/xmax=0.20 x/xmax=0.27 x/xmax=0.35

x/xmax=0.77x/xmax=0.68x/xmax=0.62

x/xmax=0.40

x/xmax=0.85 x/xmax=0.94

x/xmax=0.46

x/xmax=0.97

x/xmax=0.57

Fig. 33. Velocity profiles (Re = 5.9 · 105).

0 5 10

0.1

1

10

T
ur

bu
le

nc
e 

ki
ne

tic
 e

ne
rg

y,
 k

 [
m

2 /s
2 ]

0 5 10

M6 model

0 5 10

Experimental

0 5 10

M4 model

0 5 10

M5 model

0 5 10 15

0 5 10

0.1

1

10

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 15

Normal distance to wall, y [mm]

x/xmax=0.20 x/xmax=0.27 x/xmax=0.35

x/xmax=0.77x/xmax=0.68x/xmax=0.62

x/xmax=0.40

x/xmax=0.85 x/xmax=0.94

x/xmax=0.46

x/xmax=0.97

x/xmax=0.57

Fig. 34. Turbulence kinetic energy profiles (Re = 5.9 · 105).

L. Cutrone et al. / Int. J. Heat and Fluid Flow 28 (2007) 161–177 175
with the experimental data, the peak vales of k at
0.62 6 x/xmax 6 0.85 being under-estimated by models
M4 and M5 and correctly predicted by model M6.

6. Conclusions

This paper provides an evaluation of six laminar-to-
turbulent bypass transition models. Five models are
obtained by combining a transition-onset correlation with
an intermittency-factor model; whereas the last one is a
single-point model based on the use of a laminar kinetic
energy transport equation. Such models have been embed-
ded in a Reynolds averaged Navier–Stokes solver employ-
ing a low Reynolds number k–x turbulence model. The
performance of the models have been evaluated at first
by computing three well documented incompressible flows
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over a flat plate, namely, tests T3A, T3B, and T3C2 of
ERCOFTAC SIG 10, with different free-stream condi-
tions, the last one being characterized by non-zero pres-
sure gradient. Then, the two-dimensional flow through a
linear turbine cascade has been considered, for which
detailed experimental data are available in the literature.
From the above computations the following conclusions
can be drawn:

(1) The employed transition-onset correlations are not
satisfactory in the considered range of values of tur-
bulence intensity, Tu, insofar as they show a tendency
to delay transition, especially as Tu increases.

(2) In the presence of non-zero pressure gradients: (i) the
transition-onset correlation of Suzen et al. (C2) pro-
vides more accurate results than those obtained by
the correlation of Abu-Ghannam and Shaw, the lat-
ter predicting an early transition onset; (ii) the inter-
mittency-transport models provide more accurate
results with respect to the simpler algebraic correla-
tion of Dhawan and Narasimha.

(3) For all of the considered test cases, the intermittency-
transport models due to Steelant and Dick and Suzen
and Huang provide very similar results.

(4) Model M6 always provides the best results except for
the T3C2 test case. This may be due to the presence of
a strong pressure gradient in the transition region.
The model needs to be modified to take into account
the effect of the pressure gradient.

(5) The more complex turbine-flow test case shows the
need for including the effect of the free stream turbu-
lence on the laminar boundary layer. For this reason,
model M6 provides improved results with respect to
models M4 and M5.
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